3.25.28 \(\int \frac {(5-x) (2+5 x+3 x^2)^{3/2}}{(3+2 x)^6} \, dx\) [2428]

3.25.28.1 Optimal result
3.25.28.2 Mathematica [A] (verified)
3.25.28.3 Rubi [A] (verified)
3.25.28.4 Maple [A] (verified)
3.25.28.5 Fricas [A] (verification not implemented)
3.25.28.6 Sympy [F]
3.25.28.7 Maxima [B] (verification not implemented)
3.25.28.8 Giac [B] (verification not implemented)
3.25.28.9 Mupad [F(-1)]

3.25.28.1 Optimal result

Integrand size = 27, antiderivative size = 124 \[ \int \frac {(5-x) \left (2+5 x+3 x^2\right )^{3/2}}{(3+2 x)^6} \, dx=-\frac {141 (7+8 x) \sqrt {2+5 x+3 x^2}}{16000 (3+2 x)^2}+\frac {47 (7+8 x) \left (2+5 x+3 x^2\right )^{3/2}}{400 (3+2 x)^4}-\frac {13 \left (2+5 x+3 x^2\right )^{5/2}}{25 (3+2 x)^5}+\frac {141 \text {arctanh}\left (\frac {7+8 x}{2 \sqrt {5} \sqrt {2+5 x+3 x^2}}\right )}{32000 \sqrt {5}} \]

output
47/400*(7+8*x)*(3*x^2+5*x+2)^(3/2)/(3+2*x)^4-13/25*(3*x^2+5*x+2)^(5/2)/(3+ 
2*x)^5+141/160000*arctanh(1/10*(7+8*x)*5^(1/2)/(3*x^2+5*x+2)^(1/2))*5^(1/2 
)-141/16000*(7+8*x)*(3*x^2+5*x+2)^(1/2)/(3+2*x)^2
 
3.25.28.2 Mathematica [A] (verified)

Time = 0.46 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.63 \[ \int \frac {(5-x) \left (2+5 x+3 x^2\right )^{3/2}}{(3+2 x)^6} \, dx=\frac {\frac {5 \sqrt {2+5 x+3 x^2} \left (19031+90126 x+131516 x^2+66616 x^3+6336 x^4\right )}{(3+2 x)^5}+141 \sqrt {5} \text {arctanh}\left (\frac {\sqrt {\frac {2}{5}+x+\frac {3 x^2}{5}}}{1+x}\right )}{80000} \]

input
Integrate[((5 - x)*(2 + 5*x + 3*x^2)^(3/2))/(3 + 2*x)^6,x]
 
output
((5*Sqrt[2 + 5*x + 3*x^2]*(19031 + 90126*x + 131516*x^2 + 66616*x^3 + 6336 
*x^4))/(3 + 2*x)^5 + 141*Sqrt[5]*ArcTanh[Sqrt[2/5 + x + (3*x^2)/5]/(1 + x) 
])/80000
 
3.25.28.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.08, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {1228, 1152, 1152, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(5-x) \left (3 x^2+5 x+2\right )^{3/2}}{(2 x+3)^6} \, dx\)

\(\Big \downarrow \) 1228

\(\displaystyle \frac {47}{10} \int \frac {\left (3 x^2+5 x+2\right )^{3/2}}{(2 x+3)^5}dx-\frac {13 \left (3 x^2+5 x+2\right )^{5/2}}{25 (2 x+3)^5}\)

\(\Big \downarrow \) 1152

\(\displaystyle \frac {47}{10} \left (\frac {(8 x+7) \left (3 x^2+5 x+2\right )^{3/2}}{40 (2 x+3)^4}-\frac {3}{80} \int \frac {\sqrt {3 x^2+5 x+2}}{(2 x+3)^3}dx\right )-\frac {13 \left (3 x^2+5 x+2\right )^{5/2}}{25 (2 x+3)^5}\)

\(\Big \downarrow \) 1152

\(\displaystyle \frac {47}{10} \left (\frac {(8 x+7) \left (3 x^2+5 x+2\right )^{3/2}}{40 (2 x+3)^4}-\frac {3}{80} \left (\frac {(8 x+7) \sqrt {3 x^2+5 x+2}}{20 (2 x+3)^2}-\frac {1}{40} \int \frac {1}{(2 x+3) \sqrt {3 x^2+5 x+2}}dx\right )\right )-\frac {13 \left (3 x^2+5 x+2\right )^{5/2}}{25 (2 x+3)^5}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {47}{10} \left (\frac {(8 x+7) \left (3 x^2+5 x+2\right )^{3/2}}{40 (2 x+3)^4}-\frac {3}{80} \left (\frac {1}{20} \int \frac {1}{20-\frac {(8 x+7)^2}{3 x^2+5 x+2}}d\left (-\frac {8 x+7}{\sqrt {3 x^2+5 x+2}}\right )+\frac {\sqrt {3 x^2+5 x+2} (8 x+7)}{20 (2 x+3)^2}\right )\right )-\frac {13 \left (3 x^2+5 x+2\right )^{5/2}}{25 (2 x+3)^5}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {47}{10} \left (\frac {(8 x+7) \left (3 x^2+5 x+2\right )^{3/2}}{40 (2 x+3)^4}-\frac {3}{80} \left (\frac {(8 x+7) \sqrt {3 x^2+5 x+2}}{20 (2 x+3)^2}-\frac {\text {arctanh}\left (\frac {8 x+7}{2 \sqrt {5} \sqrt {3 x^2+5 x+2}}\right )}{40 \sqrt {5}}\right )\right )-\frac {13 \left (3 x^2+5 x+2\right )^{5/2}}{25 (2 x+3)^5}\)

input
Int[((5 - x)*(2 + 5*x + 3*x^2)^(3/2))/(3 + 2*x)^6,x]
 
output
(-13*(2 + 5*x + 3*x^2)^(5/2))/(25*(3 + 2*x)^5) + (47*(((7 + 8*x)*(2 + 5*x 
+ 3*x^2)^(3/2))/(40*(3 + 2*x)^4) - (3*(((7 + 8*x)*Sqrt[2 + 5*x + 3*x^2])/( 
20*(3 + 2*x)^2) - ArcTanh[(7 + 8*x)/(2*Sqrt[5]*Sqrt[2 + 5*x + 3*x^2])]/(40 
*Sqrt[5])))/80))/10
 

3.25.28.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1152
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(-(d + e*x)^(m + 1))*(d*b - 2*a*e + (2*c*d - b*e)*x)*((a + b 
*x + c*x^2)^p/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[p*((b^2 - 4*a 
*c)/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2)))   Int[(d + e*x)^(m + 2)*(a + b*x + 
 c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[m + 2*p + 2, 0] 
 && GtQ[p, 0]
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1228
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + 
 b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Simp[(b*(e 
*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^ 
(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x 
] && EqQ[Simplify[m + 2*p + 3], 0]
 
3.25.28.4 Maple [A] (verified)

Time = 0.36 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.67

method result size
risch \(\frac {19008 x^{6}+231528 x^{5}+740300 x^{4}+1061190 x^{3}+770755 x^{2}+275407 x +38062}{16000 \left (3+2 x \right )^{5} \sqrt {3 x^{2}+5 x +2}}-\frac {141 \sqrt {5}\, \operatorname {arctanh}\left (\frac {2 \left (-\frac {7}{2}-4 x \right ) \sqrt {5}}{5 \sqrt {12 \left (x +\frac {3}{2}\right )^{2}-16 x -19}}\right )}{160000}\) \(83\)
trager \(\frac {\left (6336 x^{4}+66616 x^{3}+131516 x^{2}+90126 x +19031\right ) \sqrt {3 x^{2}+5 x +2}}{16000 \left (3+2 x \right )^{5}}+\frac {141 \operatorname {RootOf}\left (\textit {\_Z}^{2}-5\right ) \ln \left (\frac {8 \operatorname {RootOf}\left (\textit {\_Z}^{2}-5\right ) x +10 \sqrt {3 x^{2}+5 x +2}+7 \operatorname {RootOf}\left (\textit {\_Z}^{2}-5\right )}{3+2 x}\right )}{160000}\) \(92\)
default \(-\frac {47 \left (3 \left (x +\frac {3}{2}\right )^{2}-4 x -\frac {19}{4}\right )^{\frac {5}{2}}}{1600 \left (x +\frac {3}{2}\right )^{4}}-\frac {47 \left (3 \left (x +\frac {3}{2}\right )^{2}-4 x -\frac {19}{4}\right )^{\frac {5}{2}}}{1000 \left (x +\frac {3}{2}\right )^{3}}-\frac {1457 \left (3 \left (x +\frac {3}{2}\right )^{2}-4 x -\frac {19}{4}\right )^{\frac {5}{2}}}{20000 \left (x +\frac {3}{2}\right )^{2}}-\frac {1363 \left (3 \left (x +\frac {3}{2}\right )^{2}-4 x -\frac {19}{4}\right )^{\frac {5}{2}}}{12500 \left (x +\frac {3}{2}\right )}+\frac {47 \left (3 \left (x +\frac {3}{2}\right )^{2}-4 x -\frac {19}{4}\right )^{\frac {3}{2}}}{100000}-\frac {141 \left (5+6 x \right ) \sqrt {3 \left (x +\frac {3}{2}\right )^{2}-4 x -\frac {19}{4}}}{20000}+\frac {141 \sqrt {12 \left (x +\frac {3}{2}\right )^{2}-16 x -19}}{160000}-\frac {141 \sqrt {5}\, \operatorname {arctanh}\left (\frac {2 \left (-\frac {7}{2}-4 x \right ) \sqrt {5}}{5 \sqrt {12 \left (x +\frac {3}{2}\right )^{2}-16 x -19}}\right )}{160000}+\frac {1363 \left (5+6 x \right ) \left (3 \left (x +\frac {3}{2}\right )^{2}-4 x -\frac {19}{4}\right )^{\frac {3}{2}}}{25000}-\frac {13 \left (3 \left (x +\frac {3}{2}\right )^{2}-4 x -\frac {19}{4}\right )^{\frac {5}{2}}}{800 \left (x +\frac {3}{2}\right )^{5}}\) \(211\)

input
int((5-x)*(3*x^2+5*x+2)^(3/2)/(3+2*x)^6,x,method=_RETURNVERBOSE)
 
output
1/16000*(19008*x^6+231528*x^5+740300*x^4+1061190*x^3+770755*x^2+275407*x+3 
8062)/(3+2*x)^5/(3*x^2+5*x+2)^(1/2)-141/160000*5^(1/2)*arctanh(2/5*(-7/2-4 
*x)*5^(1/2)/(12*(x+3/2)^2-16*x-19)^(1/2))
 
3.25.28.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.13 \[ \int \frac {(5-x) \left (2+5 x+3 x^2\right )^{3/2}}{(3+2 x)^6} \, dx=\frac {141 \, \sqrt {5} {\left (32 \, x^{5} + 240 \, x^{4} + 720 \, x^{3} + 1080 \, x^{2} + 810 \, x + 243\right )} \log \left (\frac {4 \, \sqrt {5} \sqrt {3 \, x^{2} + 5 \, x + 2} {\left (8 \, x + 7\right )} + 124 \, x^{2} + 212 \, x + 89}{4 \, x^{2} + 12 \, x + 9}\right ) + 20 \, {\left (6336 \, x^{4} + 66616 \, x^{3} + 131516 \, x^{2} + 90126 \, x + 19031\right )} \sqrt {3 \, x^{2} + 5 \, x + 2}}{320000 \, {\left (32 \, x^{5} + 240 \, x^{4} + 720 \, x^{3} + 1080 \, x^{2} + 810 \, x + 243\right )}} \]

input
integrate((5-x)*(3*x^2+5*x+2)^(3/2)/(3+2*x)^6,x, algorithm="fricas")
 
output
1/320000*(141*sqrt(5)*(32*x^5 + 240*x^4 + 720*x^3 + 1080*x^2 + 810*x + 243 
)*log((4*sqrt(5)*sqrt(3*x^2 + 5*x + 2)*(8*x + 7) + 124*x^2 + 212*x + 89)/( 
4*x^2 + 12*x + 9)) + 20*(6336*x^4 + 66616*x^3 + 131516*x^2 + 90126*x + 190 
31)*sqrt(3*x^2 + 5*x + 2))/(32*x^5 + 240*x^4 + 720*x^3 + 1080*x^2 + 810*x 
+ 243)
 
3.25.28.6 Sympy [F]

\[ \int \frac {(5-x) \left (2+5 x+3 x^2\right )^{3/2}}{(3+2 x)^6} \, dx=- \int \left (- \frac {10 \sqrt {3 x^{2} + 5 x + 2}}{64 x^{6} + 576 x^{5} + 2160 x^{4} + 4320 x^{3} + 4860 x^{2} + 2916 x + 729}\right )\, dx - \int \left (- \frac {23 x \sqrt {3 x^{2} + 5 x + 2}}{64 x^{6} + 576 x^{5} + 2160 x^{4} + 4320 x^{3} + 4860 x^{2} + 2916 x + 729}\right )\, dx - \int \left (- \frac {10 x^{2} \sqrt {3 x^{2} + 5 x + 2}}{64 x^{6} + 576 x^{5} + 2160 x^{4} + 4320 x^{3} + 4860 x^{2} + 2916 x + 729}\right )\, dx - \int \frac {3 x^{3} \sqrt {3 x^{2} + 5 x + 2}}{64 x^{6} + 576 x^{5} + 2160 x^{4} + 4320 x^{3} + 4860 x^{2} + 2916 x + 729}\, dx \]

input
integrate((5-x)*(3*x**2+5*x+2)**(3/2)/(3+2*x)**6,x)
 
output
-Integral(-10*sqrt(3*x**2 + 5*x + 2)/(64*x**6 + 576*x**5 + 2160*x**4 + 432 
0*x**3 + 4860*x**2 + 2916*x + 729), x) - Integral(-23*x*sqrt(3*x**2 + 5*x 
+ 2)/(64*x**6 + 576*x**5 + 2160*x**4 + 4320*x**3 + 4860*x**2 + 2916*x + 72 
9), x) - Integral(-10*x**2*sqrt(3*x**2 + 5*x + 2)/(64*x**6 + 576*x**5 + 21 
60*x**4 + 4320*x**3 + 4860*x**2 + 2916*x + 729), x) - Integral(3*x**3*sqrt 
(3*x**2 + 5*x + 2)/(64*x**6 + 576*x**5 + 2160*x**4 + 4320*x**3 + 4860*x**2 
 + 2916*x + 729), x)
 
3.25.28.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 241 vs. \(2 (102) = 204\).

Time = 0.27 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.94 \[ \int \frac {(5-x) \left (2+5 x+3 x^2\right )^{3/2}}{(3+2 x)^6} \, dx=\frac {4371}{20000} \, {\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {3}{2}} - \frac {13 \, {\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {5}{2}}}{25 \, {\left (32 \, x^{5} + 240 \, x^{4} + 720 \, x^{3} + 1080 \, x^{2} + 810 \, x + 243\right )}} - \frac {47 \, {\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {5}{2}}}{100 \, {\left (16 \, x^{4} + 96 \, x^{3} + 216 \, x^{2} + 216 \, x + 81\right )}} - \frac {47 \, {\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {5}{2}}}{125 \, {\left (8 \, x^{3} + 36 \, x^{2} + 54 \, x + 27\right )}} - \frac {1457 \, {\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {5}{2}}}{5000 \, {\left (4 \, x^{2} + 12 \, x + 9\right )}} - \frac {423}{10000} \, \sqrt {3 \, x^{2} + 5 \, x + 2} x - \frac {141}{160000} \, \sqrt {5} \log \left (\frac {\sqrt {5} \sqrt {3 \, x^{2} + 5 \, x + 2}}{{\left | 2 \, x + 3 \right |}} + \frac {5}{2 \, {\left | 2 \, x + 3 \right |}} - 2\right ) - \frac {2679}{80000} \, \sqrt {3 \, x^{2} + 5 \, x + 2} - \frac {1363 \, {\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {3}{2}}}{5000 \, {\left (2 \, x + 3\right )}} \]

input
integrate((5-x)*(3*x^2+5*x+2)^(3/2)/(3+2*x)^6,x, algorithm="maxima")
 
output
4371/20000*(3*x^2 + 5*x + 2)^(3/2) - 13/25*(3*x^2 + 5*x + 2)^(5/2)/(32*x^5 
 + 240*x^4 + 720*x^3 + 1080*x^2 + 810*x + 243) - 47/100*(3*x^2 + 5*x + 2)^ 
(5/2)/(16*x^4 + 96*x^3 + 216*x^2 + 216*x + 81) - 47/125*(3*x^2 + 5*x + 2)^ 
(5/2)/(8*x^3 + 36*x^2 + 54*x + 27) - 1457/5000*(3*x^2 + 5*x + 2)^(5/2)/(4* 
x^2 + 12*x + 9) - 423/10000*sqrt(3*x^2 + 5*x + 2)*x - 141/160000*sqrt(5)*l 
og(sqrt(5)*sqrt(3*x^2 + 5*x + 2)/abs(2*x + 3) + 5/2/abs(2*x + 3) - 2) - 26 
79/80000*sqrt(3*x^2 + 5*x + 2) - 1363/5000*(3*x^2 + 5*x + 2)^(3/2)/(2*x + 
3)
 
3.25.28.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 359 vs. \(2 (102) = 204\).

Time = 0.32 (sec) , antiderivative size = 359, normalized size of antiderivative = 2.90 \[ \int \frac {(5-x) \left (2+5 x+3 x^2\right )^{3/2}}{(3+2 x)^6} \, dx=\frac {141}{160000} \, \sqrt {5} \log \left (\frac {{\left | -4 \, \sqrt {3} x - 2 \, \sqrt {5} - 6 \, \sqrt {3} + 4 \, \sqrt {3 \, x^{2} + 5 \, x + 2} \right |}}{{\left | -4 \, \sqrt {3} x + 2 \, \sqrt {5} - 6 \, \sqrt {3} + 4 \, \sqrt {3 \, x^{2} + 5 \, x + 2} \right |}}\right ) - \frac {146256 \, {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )}^{9} + 654456 \, \sqrt {3} {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )}^{8} + 415048 \, {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )}^{7} - 15455452 \, \sqrt {3} {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )}^{6} - 140042336 \, {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )}^{5} - 207568854 \, \sqrt {3} {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )}^{4} - 544555762 \, {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )}^{3} - 286352757 \, \sqrt {3} {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )}^{2} - 252454821 \, \sqrt {3} x - 31985676 \, \sqrt {3} + 252454821 \, \sqrt {3 \, x^{2} + 5 \, x + 2}}{16000 \, {\left (2 \, {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )}^{2} + 6 \, \sqrt {3} {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )} + 11\right )}^{5}} \]

input
integrate((5-x)*(3*x^2+5*x+2)^(3/2)/(3+2*x)^6,x, algorithm="giac")
 
output
141/160000*sqrt(5)*log(abs(-4*sqrt(3)*x - 2*sqrt(5) - 6*sqrt(3) + 4*sqrt(3 
*x^2 + 5*x + 2))/abs(-4*sqrt(3)*x + 2*sqrt(5) - 6*sqrt(3) + 4*sqrt(3*x^2 + 
 5*x + 2))) - 1/16000*(146256*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2))^9 + 6544 
56*sqrt(3)*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2))^8 + 415048*(sqrt(3)*x - sqr 
t(3*x^2 + 5*x + 2))^7 - 15455452*sqrt(3)*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2 
))^6 - 140042336*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2))^5 - 207568854*sqrt(3) 
*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2))^4 - 544555762*(sqrt(3)*x - sqrt(3*x^2 
 + 5*x + 2))^3 - 286352757*sqrt(3)*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2))^2 - 
 252454821*sqrt(3)*x - 31985676*sqrt(3) + 252454821*sqrt(3*x^2 + 5*x + 2)) 
/(2*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2))^2 + 6*sqrt(3)*(sqrt(3)*x - sqrt(3* 
x^2 + 5*x + 2)) + 11)^5
 
3.25.28.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(5-x) \left (2+5 x+3 x^2\right )^{3/2}}{(3+2 x)^6} \, dx=-\int \frac {\left (x-5\right )\,{\left (3\,x^2+5\,x+2\right )}^{3/2}}{{\left (2\,x+3\right )}^6} \,d x \]

input
int(-((x - 5)*(5*x + 3*x^2 + 2)^(3/2))/(2*x + 3)^6,x)
 
output
-int(((x - 5)*(5*x + 3*x^2 + 2)^(3/2))/(2*x + 3)^6, x)